Triboelectric nanogenerators (TENGs) that operate in the contact-separation mode are widely utilized for energy harvesting owing to their simple structure, excellent durability, and high energy-conversion efficiency. This study investigated the enhanced performance of TENGs using polydimethylsiloxane (PDMS) incorporating barium titanate (BTO) and multiwalled carbon nanotubes (MWCNTs). The negative triboelectric layer, comprising PDMS with BTO and MWCNTs, and aluminum foil as both the positive triboelectric layer and electrode, were optimized to improve the TENG performance. The optimal composition of PDMS incorporating 0.01 wt% MWCNTs and 10 wt% BTO yielded output voltage and current of 394.75 V and 28.24 µA, respectively. Further enhancement was realized via the application of radio frequency plasma treatment, which increased the surface roughness and fluorine incorporation. Consequently, the output voltage and current improved to 421.06 V and 32.33 µA, respectively, with a peak power density of 4.76 W/m2 at 10 MΩ. The optimized TENG maintained consistent performance over 2000 cycles and successfully illuminated commercial LEDs, thereby demonstrating its potential for practical energy-harvesting applications.
Read full abstract