The role of the orientation of the radio frequency identification (RFID) reader is vital in the RFID-based communication system. This study presents the design and analysis of the impact of the orientation of the RFID reader (angle of incidence of the plane wave) on the detection and sensitivity characteristics of fractal chipless RFID tags. Four fractal (irregular) shaped tags are developed using four iterations of the Hilbert curve filling algorithm. The full-wave EM analysis of the designed tags in Matlab is performed by exporting them in Computer Simulation Technologies Micro-Wave Studio (CST MWS) in the frequency range of 2 to 20 GHz. Firstly, the performance of the tags is analyzed by observing the radar cross-section (RCS) of the tag for the fixed orientation of the incident plane wave in three different polarizations (horizontal, vertical, and oblique). Later, the variations in the EM spectrum (RCS results) are analyzed for oblique polarization by varying the incidence plane wave in both elevations (for two cases of 0∘ and 90∘) and azimuth planes (sweeping from 0∘ to 180∘ with a step size of 10∘). The analysis of the proposed aggregated RCS response for all cases in oblique polarization produces higher coding capacity (169 bits), coding spatial capacity (16.504 bits/cm2), coding spectral capacity (9.826 bits/GHz), and coding density (0.960 bits/GHz/cm2) for the realized highly irregular tag using fourth-iteration (4T) of Hilbert curve filling algorithm. The proposed procedure of detection based on aggregated response makes the developed RFID communication system more secure and reliable.
Read full abstract