The notion of quantale, which designates a complete lattice equipped with an associative binary multiplication distributing over arbitrary joins, appears in various areasof mathematics-in quantaloid theory, in non classical logic as completion of the Lindebaum algebra, and in different representations of the spectrum of a Câ algebra asmany-valued and non commutative topologies. To put it briefly, its importance is nolonger to be demonstrated. Quantales are ring-like structures in that they share withrings the common fact that while as rings are semi groups in the tensor category ofabelian groups, so quantales are semi groups in the tensor category of sup-lattices.In 2008 Anderson and Kintzinger [1] investigated the ideals, prime ideals, radical ideals, primary ideals, and maximal of a product ring R Ă S of two commutativenon non necceray unital rings R and S: Something resembling rings are quantales byanalogy with what is studied in ring, we begin an investigation on ideals of a productof two quantales. In this paper, given two quantales Q1 and Q2; not necessarily withidentity, we investigate the ideals, prime ideals, primary ideals, and maximal ideals ofthe quantale Q1 Ă Q2
Read full abstract