Molecular semiconductors with lanthanide ions have been synthesized based on BEDT-TTF and lanthanide chlorides: (BEDT-TTF)2[HoCl2(H2O)6]Cl2(H2O)2 (1, which contains a 4f holmium cation), and (BEDT-TTF)2LnCl4(H2O)n (Ln = Dy, Tb, Ho (2–4), which contain 4f anions of lanthanides). Conductivity and EPR measurements have been carried out along with the SQUID magnetometry, and the crystal structure has been established for 1. The structure of 1 is characterized by an alternation of organic radical cation layers composed of BEDT-TTF chains and inorganic layers consisting of chains of the [HoCl2(H2O)6]+ cations interlinked by chlorine anions and crystallization water molecules. The magnetic susceptibility of 1–3 determined mainly by lanthanide ions follows the Curie–Weiss law with the Weiss temperatures of −3, −3, −2 K for 1–3, respectively, indicating weak antiferromagnetic coupling between paramagnetic lanthanide ions. The signals attributed to the BEDT-TTF+· radical cations only are observed in the EPR spectra of 1–3, which makes it possible to study their magnetic behavior. There are two types of chains in the organic layers of 1: the chains composed of neutral molecules and those formed by BEDT-TTF+· radical cations. As a result, uniform 1D antiferromagnetic coupling of spins is observed in the BEDT-TTF+· chains with estimated exchange interaction J = −10 K. The study of dynamic magnetic properties of 1–3 shows that these compounds are not SMMs.