In this study, the DFT/M062X/PCM method was applied to investigate thermodynamic and kinetic aspects of reactions involved in possible mechanisms of antioxidant activity of caffeic acid against HOO● radicals in aqueous medium at different pH values. Kinetic parameters of the reactions involved in HAT (Hydrogen Atom Transfer), RAF (Radical Adduct Formation), and SET (Single Electron Transfer) mechanisms, including reaction energy barriers and bimolecular rate constants, were determined, and identification and characterization of stationary points along the reaction pathways within HAT and RAF mechanisms were performed. Inspection of geometrical parameters and spin densities of the radical products formed within HAT and RAF mechanisms revealed that they are stabilized by hydrogen bonding interactions and the odd electron originated through the reaction with the HOO● radical is spread over the entire molecule, resulting in significant radical stabilization. Thermodynamic and kinetic data collected in this study indicated that increasing pH of the medium boosts the antioxidant activity of caffeic acid by reducing the energy required to generate radicals within the RAF and/or HAT mechanism and, at extremely high pH, where the trianionic form of caffeic acid is a dominant species, by the occurrence of an additional fast, diffusion-limited electron-related channel.
Read full abstract