The study of combustion characteristics and heat feedback mechanisms of liquid fuels is important for fire safety engineering, particularly in the context of energy utilization. In thiswork, the effect of lip height on the evolution of n-heptane pool fire burning rates and flame heights, as well as the thermal feedback control mechanism, were investigated in a series of experiments in the presence of cross-wind. The results showed that the lip height of pool and cross-wind speed have a significant effect on the flame characteristics and heat feedback mechanism. For a given wind speed condition, the radiative feedback fraction and the convective feedback fraction showed non-monotonic changes with an increase in the lip height of pool. With the increase of lip height and cross-wind speed, the lift off phenomenon gradually appeared inside the oil pool, while the flame height outside the oil pool gradually decreased. A new correlation is proposed, which can well describle the relationship between the flame height and the ratio of the air entrainment caused by the cross airflow to that caused by the flame buoyancy, which can provide references for the utilization and management of energy storage strategies nowadays.
Read full abstract