Radiotherapy for treating breast cancer is associated with cardiac damage. This study aimed to investigate the role of the interleukin (IL)-33/soluble receptor ST2 (sST2) axis in radiation-induced cardiac injury. Expressions of IL-33 and sST2 were detected in breast cancer patients following radiotherapy, radiation-induced cardiac damaged mice model, and cardiomyocytes using quantitative real-time PCR (qRT-PCR) and immunohistochemical assay. Cardiac injury was evaluated through an ultrasound imaging system and hematoxylin & eosin staining. The transcriptional factor was assessed using dual-luciferase reporter assay and chromatin immunoprecipitation. The results indicated that IL-33 and sST2 were highly expressed in breast cancer patients, which further elevated post-6 months but reduced after 12 months of radiotherapy. Radiation induces cardiac dysfunction and elevated IL-33 and sST2 levels in a time-dependent manner. However, silencing of IL-33 decreased sST2 expression to alleviate radiation-induced cardiac dysfunction. The IL-33 could be transcriptional activated by TCF7L2 by binding to IL33 promoter sites, which mutation alleviated cardiomyocyte injury caused by radiation. Additionally, radiation treatment resulted in higher levels of TCF7L2, IL-33, and sST2 in cardiomyocytes, and TCF7L2 knockdown reduced IL-33 and sST2 expression. In conclusion, TCF7L2 transcriptional-activated IL-33 mediated sST2 to regulate radiation-induced cardiac damage, providing novel insights into radiotherapy-induced cardiac damage.