ABSTRACT As global energy demand continues to rise and traditional energy sources increasingly fail to meet sustainability targets, conventional domestic hot water systems that rely exclusively on either geothermal or solar energy face inefficiencies and seasonal limitations. To tackle these issues, this study introduces an innovative domestic hot water supply system combining MDBHE with a PV/T heat pump and investigates its thermal performance. This system utilizes thermal energy to elevate the temperature of water extracted from the MDBHE, while supplying power through photovoltaic electricity. The results indicate that increasing the circulating water flow rate improves the heat extraction capacity of the MDBHE. However, this also leads to higher flow resistance and an increased power requirement for the circulating water pump. Additionally, at a circulating water flow rate of 32 m3/h, the system fails to extract heat from geothermal energy when the inlet temperature exceeds 34.5°C. Furthermore, with a PV/T module area of 2000 m2, solar radiation intensity of 600 W/m2, and MDBHE depth of 2000 m, the system can attain a maximum water supply temperature of 50.9°C, with solar energy contributing 63%. Moreover, the coefficient of performance (COP) of the system can reach 5.8, outperforming conventional systems.