To study the V-tail inclination of a supersonic missile that meet the requirements of low electromagnetic scattering characteristics in interval flight, an automatic tilt scheme is presented. The improved annealing algorithm is used to determine the optimal solution of the V-tail tilt angle, where multiple scattering of the physical optics plus physical theory of diffraction is used to calculate the radar cross section (RCS) of the target. The results show that the optimal solutions of V-tail inclination are different in various flight intervals of the horizontal observation field. In the forward side flight interval, changing the initial azimuth has less influence on the optimal solution of V-tail tilt angle, while more influence on the missile RCS indicator. In the side tail flight interval, the RCS level of the missile is low, and there is an optimal solution and a few feasible solutions for the V-tail inclination. The feasible solution of V-tail tilt angle in the lateral flight interval is obviously increased. The presented automatic tilt scheme is effective for studying the low scattering performance of the supersonic missile V-tail.