Sexual reproduction in fungal pathogens such as Cryptococcus provides natural selection and adaptation of the organisms to environmental conditions by allowing beneficial mutations to spread. However, successful mating in these fungi requires a time-critical induction of signaling pheromones when appropriate partners become available. Recently, it has been shown that the fungus uses the transcriptional equivalent of the racing technique: 'popping the clutch'-pushing in the clutch pedal, putting the car in gear, revving with the gas pedal, and then dropping the clutch pedal to accelerate rapidly. In the same way, Cryptococcus during vegetative growth constitutively matches a high rate of pheromone synthesis with a high rate of degradation to produce repressed levels of transcript. Then, when mating is required, the fungus drops the degradative machinery, resulting in a rapid induction of the pheromone. Pairing with this novel regulatory cycle is a host of mitogen-activated protein kinase cascades, cyclic AMP-dependent, and calcium-calcineurin signaling pathways that maintain these high rates of pheromone synthesis and prime downstream pathways for an effective mating response. The intersection of a number of virulence-associated traits with sexual development such as the synthesis of an immune-disruptive laccase as well as a protective polysaccharide capsule makes these rapid regulatory strategies a formidable foe in the battle against human disease.
Read full abstract