To enhance the power supply reliability of the microgrid cluster consisting of AC/DC hybrid microgrids, this paper proposes an innovative structure that enables backup power to be accessed quickly in the event of power source failure. The structure leverages the quick response characteristics of thyristor switches, effectively reducing the power outage time. The corresponding control strategy is introduced in detail in this paper. Furthermore, taking practical considerations into account, two types of AC/DC hybrid microgrid structures are designed for grid-connected and islanded states. These microgrids exhibit strong distributed energy consumption capabilities, simple control strategies, and high power quality. Additionally, the aforementioned structures are constructed within the MATLAB/Simulink R2023a simulation software. Their feasibility is verified, and comparisons with the existing studies are conducted using specific examples. Finally, the cost and efficiency of the application of this study are discussed. Both the above results and analysis indicate that the structures proposed in this paper can reduce costs, improve efficiency, and enhance power supply stability.