With recent development of mobile Internet technology and connected vehicle technology, vehicle trajectory data are readily available and exhibit great potential to be used as an alternative data source for urban traffic signal control. In this study, a Queue Intensity Adaptive (QIA) algorithm is proposed, using vehicle trajectory data as the only input to perform adaptive signal control. First, a Kalman filter-based method is employed to estimate real-time queue state with vehicle trajectories. Then, based on queue intensity that quantifies queuing pressure, five control situations are defined, and different min-max optimization models are designed correspondingly. Last, a situation-aware signal control optimization procedure is developed to adapt intersection’s queue intensity. QIA algorithm optimizes phase sequence and green time simultaneously. One case study was conducted at a field intersection in Shenzhen, China. The results show that provided with 7.4% penetrated vehicle trajectories, QIA algorithm effectively prevented queue spillback by constraining temporal percentage of queue spillback under 2.4%. The performance of QIA was also compared with the algorithm in Synchro and Max Pressure (MP) method. It was found that compared with Synchro, the extreme queue intensity, temporal percentage of queue spillback, delay, and stops were decreased by 54.7%, 97%, 22.3%, and 45.1%, respectively, and compared with MP the above four indices were decreased by 16%, 61.5%, −1.8%, and 49.4%, respectively.