Quaternion and biquaternion symmetry transformations have been applied to non-Cartesian reference systems of direct and reciprocal crystal lattices. The transformations performed directly in the sets of crystal reference axes simplify the calculations, eliminate the need for orthogonalization, permit the use of crystallographic vectors for defining the directions of rotations and perform the computations directly in the crystal coordinates. The applications of the general quaternion transformations are envisioned for physical, chemical, crystallographic and engineering applications. The general quaternion multiplication rules for any symmetry-unrestricted lattices have been derived for the triclinic crystallographic system and have been applied to the biquaternion representations of all point-group symmetry elements, including the crystallographic hexagonal system. Cayley multiplication matrices for point-groups, based on the biquaternion symbols of proper and improper symmetry elements, have been exemplified.
Read full abstract