Rectification describes the conversion of an oscillating field or current into a quasi-static one and the most basic example of a rectifier is an AC/DC converter in electronics. This principle can be translated to nonlinear light-matter interactions, where optical rectification converts the oscillating electric field component of light into a quasi-static polarization and phononic rectification converts a lattice vibration into a quasi-static structural distortion. Here, we present a rectification mechanism for magnetism that we call magnonic rectification, where a spin precession is converted into a quasi-static magnetization through the force exerted by a coupled chiral phonon mode. The transiently induced magnetic state resembles that of a canted antiferromagnet, opening an avenue toward creating dynamical spin configurations that are not accessible in equilibrium.