In a ball Ω=BR(0)⊂Rn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega =B_R(0)\\subset \\mathbb {R}^n$$\\end{document}, n≥2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n\\ge 2$$\\end{document}, the chemotaxis system ut=∇·(D(u)∇u)-∇·(uS(u)∇v),0=Δv-μ+u,μ=1|Ω|∫Ωu,(⋆)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\left\\{ \\begin{array}{l}u_t = \ abla \\cdot \\big ( D(u) \ abla u \\big ) - \ abla \\cdot \\big ( uS(u)\ abla v\\big ), \\\\ 0 = \\Delta v - \\mu + u, \\qquad \\mu =\\frac{1}{|\\Omega |} \\int _\\Omega u, \\end{array} \\right. \\qquad \\qquad (\\star ) \\end{aligned}$$\\end{document}is considered under no-flux boundary conditions, with a focus on nonlinearities S∈C2([0,∞))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$S\\in C^2([0,\\infty ))$$\\end{document} which exhibit super-algebraically fast decay in the sense that with some KS>0,β∈[0,1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K_S>0, \\beta \\in [0,1)$$\\end{document} and ξ0>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi _0>0$$\\end{document}, S(ξ)>0andS′(ξ)≤-KSξ-βS(ξ)forallξ≥ξ0.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} S(\\xi )>0 \\quad \ ext{ and } \\quad S'(\\xi ) \\le -K_S\\xi ^{-\\beta } S(\\xi ) \\qquad \ ext{ for } \ ext{ all } \\xi \\ge \\xi _0. \\end{aligned}$$\\end{document}It is, inter alia, shown that if furthermore D∈C2((0,∞))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$D\\in C^2((0,\\infty ))$$\\end{document} is positive and suitably small in relation to S by satisfying ξS(ξ)D(ξ)≥KSDξλforallξ≥ξ0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\frac{\\xi S(\\xi )}{D(\\xi )} \\ge K_{SD}\\xi ^\\lambda \\qquad \ ext{ for } \ ext{ all } \\xi \\ge \\xi _0 \\end{aligned}$$\\end{document}with some KSD>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K_{SD}>0$$\\end{document} and λ>2n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda >\\frac{2}{n}$$\\end{document}, then throughout a considerably large set of initial data, (⋆\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\star $$\\end{document}) admits global classical solutions (u, v) fulfilling z(t)C≤‖u(·,t)‖L∞(Ω)≤Cz(t)forallt>0,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\frac{z(t)}{C} \\le \\Vert u(\\cdot ,t)\\Vert _{L^\\infty (\\Omega )} \\le Cz(t) \\qquad \ ext{ for } \ ext{ all } t>0, \\end{aligned}$$\\end{document}with some C=C(u,v)≥1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C=C^{(u,v)}\\ge 1$$\\end{document}, where z denotes the solution of z′(t)=z2(t)·S(z(t)),t>0,z(0)=ξ0,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\left\\{ \\begin{array}{l}z'(t) = z^2(t) \\cdot S\\big ( z(t)\\big ), \\qquad t>0, \\\\ z(0)=\\xi _0, \\end{array} \\right. \\end{aligned}$$\\end{document}which is seen to exist globally, and to satisfy z(t)→+∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$z(t)\\rightarrow +\\infty $$\\end{document} as t→∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$t\\rightarrow \\infty $$\\end{document}. As particular examples, exponentially and doubly exponentially decaying S are found to imply corresponding infinite-time blow-up properties in (⋆\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\star $$\\end{document}) at logarithmic and doubly logarithmic rates, respectively.