In this paper, we delve into the challenge of identifying an unknown source in a space-time fractional diffusion-wave equation. Through an analysis of the exact solution, it becomes evident that the problem is ill-posed. To address this, we employ both the Tikhonov regularization method and the Quasi-boundary regularization method, aiming to restore the stability of the solution. By adhering to both a priori and a posteriori regularization parameter choice rules, we derive error estimates that quantify the discrepancies between the regularization solutions and the exact solution. Finally, we present numerical examples to illustrate the effectiveness and stability of the proposed methods.