AbstractIn this study, we investigated the high-pressure (HP) metamorphism of the Precambrian continental crust exposed in the Zheltau terrane in South Kazakhstan (Koyandy complex) and the Chu-Kendyktas terrane in the North Tien Shan of Kyrgyzstan (Aktyuz, Kemin and Kokdzhon complexes) within the SW part of the Central Asian Orogenic Belt. HP quartz–feldspar lithologies of the Koyandy complex consist of migmatized kyanite-bearing garnet–mica paragneisses, garnet–kyanite paragneisses and their derivatives associated with eclogites. Paragneisses demonstrate prograde evolution involving mica dehydration melting and producing magnesium-rich garnet, kyanite and K-feldspar at the near-peak to retrograde stages at pressures of 15–18.5 kbar and temperatures of 800–870°C. The widespread growth of micas in these rocks reflects lower stages of retrogression at P = 10–12 kbar and T = 720–770°C. The age distributions of the cores of detrital zircon grains from the paragneisses indicate a predominance of Neoproterozoic and minor occurrence of Mesoproterozoic and Palaeoproterozoic sources of their protoliths. The ages of ∼487–485 Ma obtained from the zircon rims of the paragneisses reflect the timing of their HP metamorphic re-equilibration. These age clusters are consistent with the age estimates obtained from the rims of zircons in the eclogite-bearing garnet gneisses of the adjacent Aktyuz complex in the North Tien Shan. The P–T paths and zircon ages obtained from the high-grade quartz–feldspar gneisses of the Zheltau and Chu-Kendyktas terranes are thus interpreted to indicate involvement of the crustal material derived from the Precambrian basement (magmatic zircons aged ca. 844 Ma) and its Ediacaran–Cambrian sedimentary cover (detrital zircons with maxima at 1 Ga and 800–600 Ma) in the latest Cambrian subduction processes induced by the closure of the oceanic basins assigned to the Palaeo-Asian Ocean.
Read full abstract