An extended quark sigma model which includes higher-order mesonic interactions is studied at the ˇnite baryonic chemical potential uB and temperature T. Theeld equations have been solved in the mean-ˇeld approximation by using the modied iteration method atnite baryonic chemical potential uB and temperature T. The Goldstone theorem is satised below a critical temperature in the chiral limit for uB =0 . As expected from general universality, the chiral phase transition is second-order. By including the higher-order mesonic interactions, the critical temperature is reduced compared to that found in recent works and is in good agreement with lattice QCD results. The nucleon mass is examined in the (uB ,T ) plane, showing a strong dependence on uB and T. Wend that an increase in both the baryonic chemical potential uB and the temperature T leads to an increase in the values of the nucleon mass. This is evidence for the quarkAgluon deconnement phase transition at higher values of temperature. �·¥¤¸E ¢²¥´ · ¸I¨·¥´´ O ±¢ ·±μ¢ O ¸¨£³ -³μ¤¥ ²O, ¢±²OI OÐ O ¢§ ¨³μ¤¥°¸E¢¨O ³¥§μ´μ¢ ¢O¸- I¨I ¶μ·O¤±μ¢. Œμ¤¥²O · ¸¸³ E·¨¢ ¥E¸O ¸ ±μ´¥I´O³¨ i ·¨μ´´O³ I¨³¨I¥¸±¨³ ¶μE¥´I¨ ²μ³ uB ¨ E¥³¶¥· EE·μ° T. �μ²¥¢O¥ E· ¢´¥´¨O ·¥I OE¸O ¢ ¶·¨i²¨|¥´¨¨ ¸·¥¤´¥£μ ¶μ²O ¸ ¶μ³μÐOO ³μ¤¨- E¨I¨·μ¢ ´´μ£μ ³¥Eμ¤ ¨E¥· I¨° ¤²O ±μ´¥I´OI i ·¨μ´´μ£μ I¨³¨I¥¸±μ£μ ¶μE¥´I¨ ² uB ¨E ¥³¶¥- · EE·O T. '¥μ·¥³ ƒμ²¤¸EμE´ ¢O¶μ²´O¥E¸O ´¨|¥ ±·¨E¨I¥¸±μ° E¥³¶¥· EE·O ¢ ±¨· ²O´μ³ ¶·¥¤¥²¥ ¤²O uB =0 . ‚ ¸μμE¢¥E¸E¢¨¨ ¸ μ|¨¤ ´¨O³¨ μiÐ¥° E´¨¢¥·¸ ²O´μ¸E¨ ±¨· ²O´O° E §μ¢O° ¶¥·¥Iμ¤ ¢O¶μ²´O¥E¸O ¢μ ¢Eμ·μ³ ¶μ·O¤±¥. �·¨ EI¥E¥ ³¥§μ´´OI ¢§ ¨³μ¤¥°¸E¢¨° ¢O¸I¨I ¶μ·O¤±μ¢ ¢¥²¨I¨´ ±·¨E¨I¥¸±μ° E¥³¶¥· EE·O ¸´¨| ¥E¸O ¶μ ¸· ¢´¥´¨O ¸ ¢¥²¨I¨´ ³¨, ¶μ²EI¥´´O³¨ ¢ ´¥¤ ¢´μ μ¶E- i²¨±μ¢ ´´OI · iμE I, ¨ ´ I줨E¸O ¢ Iμ·μI¥³ ¸μ£² ¸¨¨ ¸ ·¥§E²OE E ³¨ ·¥I¥EμI´μ° S•". Œ ¸¸ ´E±²μ´ · ¸¸³ E·¨¢ ¥E¸O ¢ ¶²μ¸±μ¸E¨ (uB ,T ) ¨ ¤¥³μ´¸E·¨·E¥E ¸¨²O´EO § ¢¨¸¨³μ¸EO μE uBT . �μ± § ´μ, IEμ μ¤´μ¢·¥³¥´´μ¥ E¢¥²¨I¥´¨¥ ¶μE¥´I ¨ ² ¨ E¥³¶¥· EE·O ¶·¨¢μ¤¨E ± E¢¥²¨I¥´¨O ³ ¸¸O ´E±²μ´ , IEμ O¢²O¥E¸O ¶·μO¢²¥´¨¥³ ±¢ ·±-£²Oμ´´μ£μ E §μ¢μ£μ ¶¥·¥Iμ¤ ¤¥±μ´E °´³¥´E ¶·¨ ¢O- ¸μ±¨I E¥³¶¥· EE· I.