We have explored the effect of dark matter interaction on hybrid star (HS) in the light of recent astrophysical observational constraints. The presence of dark matter is assumed to be there in both the hadron as well as the quark sector. The dark matter particle interacts with both hadron and quark matter through the exchange of a scalar as well as a vector meson. The equation of state (EOS) of the hadron part is computed using the NL3 version of the relativistic mean field(RMF) model, whereas the quark part is taken care of using the well-known MIT Bag model with the vector interaction. We investigate the effect of the dark matter density and the mass of the dark matter particle on various observables like mass, radius, tidal deformability of the dark matter admixed hybrid star(DMAHS).In this study, we have noted an intriguing aspect that is the speed of sound in the DMAHS is insensitive to both the mass as well as the density of dark matter. We also observe a striking similarity in the variation of transition mass and its corresponding radius, as well as the maximum mass of neutron stars, with dark matter density and mass. We employ observational constraints from neutron stars to narrow down the allowed range of the parameters of dark matter.
Read full abstract