Non-reciprocal charge transport has gained significant attention due to its potential in exploring quantum symmetry and its promising applications. Traditionally, non-reciprocal transport has been observed in the longitudinal direction, with non-reciprocal resistance being a small fraction of the ohmic resistance. Here we report a transverse non-reciprocal transport phenomenon featuring a quadratic current-voltage characteristic and divergent non-reciprocity, termed the non-reciprocal Hall effect. This effect is observed in microscale Hall devices fabricated from platinum (Pt) deposited by a focused ion beam on silicon substrates. The transverse non-reciprocal Hall effect arises from the geometrically asymmetric scattering of textured Pt nanoparticles within the focused-ion-beam-deposited Pt structures. Notably, the non-reciprocal Hall effect generated in focused-ion-beam-deposited Pt electrodes can propagate to adjacent conductors such as Au and NbP through Hall current injection. Additionally, this pronounced non-reciprocal Hall effect facilitates broadband frequency mixing. These findings not only validate the non-reciprocal Hall effect concept but also open avenues for its application in terahertz communication, imaging and energy harvesting.
Read full abstract