The theory of quantum mechanical scattering in hyperbolic space is developed. General formulas based on usage of asymptotic form of the solution of the Shrödinger equation in hyperbolic space are derived. The concept of scattering length in hyperbolic space, a convenient measurable in describing low-energy nuclear interactions is introduced. It is shown that, in the limit of the flat space, i.e., when ρ→∞, the obtained expressions for quantum mechanical scattering in hyperbolic space transform to corresponding formulas in three-dimensional Euclidean space.