The whale optimization algorithm has received much attention since its introduction due to its outstanding performance. However, like other algorithms, the whale optimization algorithm still suffers from some classical problems. To address the issues of slow convergence, low optimization precision, and susceptibility to local convergence in the whale optimization algorithm (WOA). Defining the optimization behavior of whale individuals as quantum mechanical behavior, a whale optimization algorithm based on atom-like structure differential evolution (WOAAD) is proposed. Enhancing the spiral update mechanism by introducing a sine strategy guided by the electron orbital center. Improving the random-walk foraging mechanism by applying mutation operations to both the electron orbital center and random individuals. Performing crossover operations between the newly generated individuals from the improved mechanisms and random dimensions, followed by a selection process to retain superior individuals. This accelerates algorithm convergence, enhances optimization precision, and prevents the algorithm from falling into local convergence. Finally, implementing a scouting bee strategy, where whale individuals progressively increase the number of optimization failures within a limited parameter L. When a threshold is reached, random initialization is carried out to enhance population diversity. Conducting simulation experiments to compare the improved algorithm with the whale optimization algorithm, other optimization algorithms, and other enhanced whale optimization algorithms. The experimental results indicate that the improved algorithm significantly accelerates convergence, enhances optimization precision, and prevents the algorithm from falling into local convergence. Applying the improved algorithm to five engineering design problems, the experimental results demonstrate that the improved algorithm exhibits good applicability.