In this letter, we report our observation of an extraordinarily rich phase diagram of a LaScO3/SrTiO3 heterostructure. Close to the superconducting transition temperature, the system hosts a superconducting critical point of the Infinite-randomness type characterized by an effective dynamical exponent νz that diverges logarithmically. At lower temperatures, we find the emergence of a magnetic field-tuned metallic phase that co-exists with a quantum Griffiths phase (QGP). Our study reveals a previously unobserved phenomenon in 2D superconductors—an unanticipated suppression of the QGP below a crossover temperature in this system. This concealment is accompanied by the destruction of the superconducting quantum critical point (QCP) signaled by a power-law divergence (in temperature) of the effective dynamical exponent. These observations are entirely at odds with the predictions of the infinite-randomness scenario and challenge the very concept of a vanishing energy scale associated with a QCP. We develop and discuss possible scenarios like smearing of the phase transition that could plausibly explain our observations. Our findings challenge the notion that QGP is the ultimate ground state in two-dimensional superconductors.