Multiple exciton physics in semiconductor nanocrystals play an important role in optoelectronic devices. This work investigates radially alloyed CdZnSe/CdS nanocrystals with suppressed Auger recombination due to the spatial separation of carriers, which also underpins their performance in optical gain and scintillation experiments. Due to suppressed Auger recombination, the biexciton lifetime is greater than 10 ns, much longer than most nanocrystals. The samples show optical gain, amplified spontaneous emission, and lasing at thresholds <2 excitons per particle. They also show broad gain bandwidth (>500 meV) encompassing 4 amplified spontaneous emission bands. Similarly enabled by slowed multiple exciton relaxation, the samples display strong performance in scintillating films under X-ray illumination. The CdZnSe/CdS samples have fast radioluminescence rise (<80 ps) and decay times (<5 ns), light yields up to 6700 photons·MeV-1, and the demonstrated capacity for incorporation into large area films for scintillation imaging.