AbstractThe goal of transgenesis in plant breeding is to make step‐change improvements in traits of interest. However, improving quantitative traits, such as yield in maize (Zea mays L.), with transgenes has been difficult. Traditionally, transgene testing is done on a few isogenic lines, and results are extrapolated to entire breeding populations. Testing on limited germplasm does not provide a robust estimate of a transgene's value. Incorporating transgenes directly into breeding populations could increase genetic variance and the rate of genetic gain. Here, we used a transgene that reduces ethylene as a case study and investigated event, transgene, family, and environment effects and their interactions. We also determined whether introduction of the transgene into a breeding population would result in transgenic lines being preferentially selected over nontransgenic lines for yield. We found significant variation in transgene effects across clustered environments and families for multiple traits including yield. In environmental Cluster 2, the transgenic lines yielded 0.4 Mg ha−1 more than nontransgenic lines in family KC22; yet, in family QY43, transgenic lines yielded 0.3 Mg ha−1 less. Similarly, within Cluster 4, the QY43 family had preferential selection of transgenic over nontransgenic lines, whereas in families YE41 and AY91, nontransgenic lines were selected more frequently. These results show the critical importance of evaluating transgenes across broad germplasm diversity to assess their general value to a program. Integrating transgenes, or using gene editing, directly in a breeding program can expand genetic variation for quantitative traits and potentially accelerate genetic gain.
Read full abstract