Rapid socio-economic development has led to many water environmental issues in small watersheds such as non-compliance with water quality standards, complex pollution sources, and difficulties in water environment management. To achieve a quantitative evaluation of water quality, identify pollution sources, and implement refined management in small watersheds, this study collected monthly seven water quality indexes of four monitoring points from 2010 to 2023, and ten water quality indexes of 23 sampling points in the Shiting River and Mianyuan River which are tributaries of the Tuojiang River Basin. Then, water quality evaluation and pollution source analysis were conducted from both temporal and spatial perspectives using the Water Quality Index (WQI) method, the Absolute Principal Component Scores/Multiple Linear Regression (APCS-MLR) method, and the Positive Matrix Factorization (PMF) receptor modeling technique. The results indicated that except for total nitrogen (TN), the concentrations of other water quality indexes exhibited a decreasing trend, and all were divided into two obvious stages before and after 2016. Furthermore, the proportion of water quality grade of Good and above increased from 73.96 to 84.94% from 2010-2015 to 2016-2023, and the water quality grade of Good and above from upstream to downstream dropped from 100 to 23.33%. From the temporal scale, four and five pollution sources were identified in the first and second stages, respectively. The distinct TN pollutant is mainly affected by agricultural non-point sources (NPS), whose impact is enhanced from 17.76 to 78.31%. Total phosphorus (TP) was affected by the phosphorus chemical industry, whose contribution gradually weakened from 50.8 to 24.9%. From a spatial perspective, four and five pollution sources were identified in the upstream and downstream, respectively. Therefore, even though there are some limitations due to the data availability of water monitory and hydrology data, the proposed research framework of this study can be applied to the water environmental management of other similar watersheds.
Read full abstract