Phase microscopy that records the bandlimited image and its Fourier image simultaneously (BIFT) is a phase retrieval method with unique and rapid convergence. In this paper, we present a single-exposure quantitative differential interference contrast (DIC) microscopy based on BIFT method. The contrasts of the recorded DIC image and its Fourier image, analyzed by simulation and experiment, can be largely improved by the initial phase difference between two sheared lights (bias), however their trends with biases are opposite. By adding the optimized bias with the compromise of the contrasts in image and Fourier space, the phase sensitivity can be improved than BIFT method only. We have experimentally demonstrated that a sample of 25 nm height can be successfully recovered from a single exposure. The presented single-exposure quantitative DIC microscopy provides a promising technique for real-time phase imaging.