This study aimed to explore the effects of different disturbances on the fungal communities in the sediments of the Jialing River in order to provide scientific basis for the protection of the river ecosystem. The fungal community in the sediments of the main stream of the Jialing River was taken as the research object, and high-throughput sequencing and bioinformatics techniques were used to analyze the differences in the composition and function of fungal communities in river sediment of different types of disturbance (project disturbance, tributary disturbance, sand mining disturbance, and reclamation disturbance) and non-disturbance sections. The results showed that: ① The reclamation and project disturbances significantly inhibited the diversity and richness of fungal communities (P<0.05). The tributary disturbance increased the richness of fungal communities, whereas the impact of sand mining disturbance on sediment fungal communities was not significant. ② The diversity and composition of fungal communities tended to be similar at the different sampling sites in the section with low input of exogenous substances (non-disturbance and sand mining disturbance), whereas there were obvious differences in the diversity of fungal communities at the different sampling sites of high input of external substances (tributary disturbance, project disturbance, and reclamation disturbance) sections. ③ Ascomycota, Rozellomycota, and Basidiomycota were the main dominant fungal phyla in the sediments of the Jialing River. The relative abundance of Rozellomycota was the highest in the sand mining interference section, and the relative abundance of Basidiomycota was the highest in the tributary interference section. Project disturbance significantly increased the relative abundance of saprotrophs, animal pathogens, plant pathogens, and dung saprotrophs, whereas other disturbances inhibited the relative abundance of fungal parasitic fungi, plant pathogens, and plant saprophytes. In conclusion, human disturbance has caused changes in fungal diversity, community structure, and function in the sediment of the Jialing River, and xenobiotic input was a key factor contributing to this phenomenon. The results can provide a reference for predicting and evaluating the ecological quality of river sediments.
Read full abstract