Autophagy is a crucial quality control mechanism that degrades damaged cellular components through lysosomal fusion with autophagosomes. However, elevated autophagy levels can promote drug resistance in cancer cells, enhancing their survival. Downregulation of autophagy through oxidative stress is a clinically promising strategy to counteract drug resistance, yet precise control of oxidative stress in autophagic proteins remains challenging. Here, a molecular design strategy of biocompatible neutral Ir(III) photosensitizers is demonstrated, B2 and B4, for precise reactive oxygen species (ROS) control at lysosomes to inhibit autophagy. The underlying molecular mechanisms for the biocompatibility and lysosome selectivity of Ir(III) complexes are explored by comparing B2 with the cationic or the non-lysosome-targeting analogs. Also, the biological mechanisms for autophagy inhibition via lysosomal oxidation are explored. Proteome analyses reveal significant oxidation of proteins essential for autophagy, including lysosomal and fusion-mediator proteins. These findings are verified in vitro, using mass spectrometry, live cell imaging, and a model SNARE complex. The anti-tumor efficacy of the precise lysosomal oxidation strategy is further validated in vivo with B4, engineered for red light absorbance. This study is expected to inspire thetherapeutic use of spatiotemporal ROS control for sophisticated modulation of autophagy.
Read full abstract