The aim of this study was to assess the effectiveness of a deep learning-based image contrast-boosting algorithm by enhancing the image quality of low-dose computed tomography pulmonary angiography at reduced iodine load. This study included 179 patients who underwent low-dose computed tomography pulmonary angiography with a reduced iodine load using 64 mL of a 1:1 mixture of contrast medium from January 1 to June 30, 2023. For single-energy computed tomography, the noise index was set at 15.4 to maintain a CTDIvol of <2 mGy at 80 kVp, and for dual-energy computed tomography, fast kV-switching between 80 and 140 kVp was employed with a fixed tube current of 145 mA. Images were reconstructed by 50% adaptive statistical iterative reconstruction (AR50) and a commercially available deep learning image reconstruction (TrueFidelity) package at a high strength level (TFH). In addition, AR50 images were further processed using a deep learning-based contrast-boosting algorithm (AR50-CB). Quantitative and qualitative image qualities and numbers of involved vessels with thrombus at each pulmonary artery level were compared in the 3 image types using the Friedman test and Wilcoxon signed rank test. Five hundred thirty-seven reconstructed image datasets of 179 patients were analyzed. Quantitative image analysis showed AR50-CB (30.8 ± 10.0 and 28.1 ± 9.6, respectively) had significantly higher signal-to-noise ratio and contrast-to-noise ratio values than AR50 (20.2 ± 6.2 and 17.8 ± 6.2, respectively) (P < 0.001) or TFH (28.3 ± 8.3 and 24.9 ± 8.1, respectively) (P < 0.001). Qualitative image analysis showed that contrast enhancement and noise scores of AR50-CB were significantly greater than those of AR50 (P < 0.001) and that AR50-CB enhancement scores were significantly higher than TFH enhancement scores (P < 0.001). The number of subsegmental pulmonary arteries affected by thrombus detected was significantly greater for AR50-CB (30 for AR50, 30 for TFH, and 55 for AR50-CB, P < 0.001). The use of a deep learning-based contrast-boosting algorithm improved image quality in terms of signal-to-noise ratio and contrast-to-noise ratio values and the detection of thrombi in subsegmental pulmonary arteries.