Aflatoxins (AFs), an important category of pollutants, are formed in many foods and adversely affect human health. Therefore, their determination is critical to ensuring human food health. An efficient dispersive solid-phase microextraction technique was developed as a simple and straightforward sample preparation technique for determination of four aflatoxins using a high-performance liquid chromatography (HPLC) fluorescence detector. A novel efficient, green sorbent for extracting AFs was synthesized based on hydrothermal and chemical strategies. The amounts of three sorbent components were optimized using a mixture design (simplex lattice design), including 14 experiments. The optimal amount of amino-bimetallic Fe/Ni-MIL-53 nanospheres, chitosan, and magnetic Fe3O4 nanoparticles as sorbent components was 0.87, 0.67, and 0.47 g, respectively. Also, various factors affecting the process of AF determination were studied and optimized in two successive experimental designs, including the definitive screening design and the Box-Behnken design. Under optimal conditions, the linear ranges for measuring aflatoxin B1, aflatoxin B2, aflatoxin G1, and aflatoxin G2 were 0.05-82.6, 0.07-86.4, 0.08-85.7, and 0.07-89.5 ng mL-1, respectively. The relative standard deviations under inter-day and intra-day conditions for measuring AFs at three analyte concentrations were determined in triplicate analysis and were in the ranges of 3.7-4.6% and 4.9-6.1% for water sample analysis, respectively. The qualitative detection limits for determining AFs were between 0.01 and 0.05 ng mL-1. The pre-concentration factor of the method for measuring AFs ranged from 739.7 to 802.1. The proposed method was used for determining AFs in several real samples, including herbal distillate, black tea, corn, and real water samples. The relative recovery and standard deviation were 87.8-97.8% and 4.10-6.82%, respectively.
Read full abstract