Acequinocyl and bifenazate are potent acaricides acting at the Qo site of complex III of the electron transport chain, but frequent applications of these acaricides have led to the development of resistance in spider mites. Target-site resistance caused by mutations in the conserved cd1- and ef-helices of the Qo pocket of cytochrome b has been elucidated as the main resistance mechanism. We therefore monitored Qo pocket mutations in European field populations of Tetranychus urticae and uncovered a new mutation, L258F. The role of this mutation was validated by revealing patterns of maternal inheritance and by the independently replicated introgression in an unrelated susceptible genetic background. However, the parental strain exhibited higher resistance levels than conferred by the mutation alone in isogenic lines, especially for acequinocyl, implying the involvement of strong additional resistance mechanisms. This was confirmed by revealing a polygenic inheritance pattern with classical genetic crosses and via synergism experiments. Therefore, a genome-wide expression analysis was conducted that identified a number of highly overexpressed detoxification genes, including many P450s. Functional expression revealed that the P450 CYP392A11 can metabolize bifenazate by hydroxylation of the ring structure. In conclusion, the novel cytochrome b target-site mutation L258F was uncovered in a recently collected field strain and its role in acequinocyl and bifenazate resistance was validated. However, the high level of resistance in this strain is most likely caused by a combination of target-site resistance and P450-based increased detoxification, potentially acting in synergism.
Read full abstract