Resonant metasurfaces provide a promising solution to overcome the limitations of nonlinear materials in nature by enhancing the interaction between light and matter and amplifying optical nonlinearity. In this paper, we design an aluminum (Al) metasurface that supports surface lattice resonance (SLR) with less nanoparticle filling density but more prominent saturable absorption effects, in comparison to a counterpart that supports localized surface plasmon resonance (LSPR). In detail, the SLR metasurface exhibits a narrower resonance linewidth and a greater near-field enhancement, leading to a more significant modulation depth (9.6%) at a low incident fluence of 25 μJ/cm2. As an application example, we have further achieved wavelength-tunable Q-switched pulse generation from 1020 to 1048 nm by incorporating the SLR-based Al metasurface as a passive saturable absorber (SA) in a polarization-maintaining ytterbium-doped fiber laser. Typically, the Q-switched pulse with a repetition rate of 33.7 kHz, pulse width of 2.1 μs, pulse energy of 141.7 nJ, and signal-to-noise ratio (SNR) of greater than 40 dB at the fundamental frequency can be obtained. In addition, we have investigated the effects of pump power and central wavelength of the filter on the repetition rate and pulse width of output pulses, respectively. In spite of demonstration of only using the Al metasurface to achieve a passive Q-switched fiber laser, our work offers an alternative scheme to build planar, lightweight, and broadband SA devices that could find emerging applications from ultrafast optics to neuromorphic photonics, considering the fast dynamics, CMOS-compatible fabrication, and decent nonlinear optical response of Al-material-based nanoplasmonics.