The ammosamides (AMMs) are a family of pyrroloquinoline alkaloids that exhibits a wide variety of bioactivities. A biosynthetic gene cluster (BGC) that is highly homologous in both gene content and genetic organization to the amm BGC was identified by mining the Streptomyces uncialis DCA2648 genome, leading to the discovery of a sub-family of new AMM congeners, named ammosesters (AMEs). The AMEs feature a C-4a methyl ester, differing from the C-4a amide functional group characteristic to AMMs, and exhibit modest cytotoxicity against a broad spectrum of human cancer cell lines, expanding the structure–activity relationship for the pyrroloquinoline family of natural products. Comparative analysis of the ame and amm BGCs supports the use of a scaffold peptide as an emerging paradigm for the biosynthesis of the pyrroloquinoline family of natural products. AME and AMM biosynthesis diverges from a common intermediate by evolving the pathway-specific Ame24 O-methyltransferase and Amm20 amide synthetase, respectively. These findings will surely inspire future efforts to mimic Nature's combinatorial biosynthetic strategies for natural product structural diversity.
Read full abstract