Artificial grow lights, such as light-emitting diodes (LEDs) and fluorescent grow lights, are commonly used in modern day indoor farming, citing advantages in energy efficiency and a higher controlled environment. However, the use of LEDs poses a risk in mercury contaminations as a result of its production process, specifically LEDs with polyurethane encapsulates that were traditionally produced using mercury resins as a catalyst. A total of 10.0 ppm of mercury was detected in a curly kale sample harvested from an indoor hydroponic vegetable farm, exceeding Singapore Food Regulation's limit of 0.05 ppm. Vegetables, farming inputs, and surface swabs from the affected farm were analyzed using wet acid digestion followed by cold vapor atomic absorption spectroscopy analysis. The investigation found high concentrations of mercury in the LED encapsulant, and the encapsulant material was identified to be polyurethane by Fourier transform infrared spectroscopy and pyrolysis-gas chromatography-mass spectrometry analysis, indicating the source of mercury contamination to be the LED polyurethane encapsulant.
Read full abstract