Isoquinoline alkaloids represent an important class of molecules due to their broad range of pharmacology and clinical utility. Prospective development and use of these alkaloids as effective anticancer agents have elicited great interest. In this study, in order to reveal structure-activity relationship, we present the characterization of bioactive isoquinoline alkaloid-DNA triplex interactions, with particular emphasis on the sequence selectivity and preference of binding to the two types of DNA triplexes, by electrospray ionization mass spectrometry (ESI-MS) and various spectroscopic techniques. The six alkaloids, including coptisine, columbamine, epiberberine, berberrubine, jateorhizine, and fangchinoline, were selected to explore their interactions with the TC and TTT triplex DNA structures. Berberrubine, fangchinoline, coptisine, columbamine, and epiberberine have preference for TC rich DNA sequences compared to TTT rich DNA triplex based on affinity values in MS. The experimental results from different fragmentation modes in tandem MS, subtractive and hyperchromic effects in UV absorption spectra, fluorescence quenching and enhancement in fluorescence spectra, and strong conformational changes in circular dichroism (CD) hinted that the interaction between isoquinoline alkaloid-TC/TTT DNA had diverse mechanisms including at least two different binding modes: the electrostatic binding and the intercalation binding. Interestingly, columbamine, berberrubine, and fangchinoline can stabilize TTT triplex as inferred from optical thermal melting profiles, while it was not the case in TC triplex. These results provide new insights into binding of isoquinoline alkaloids to pyrimidine motif triplex DNA.
Read full abstract