Several RGC intrinsic signaling pathways have been shown to enhance RGC survival and RGC axonal growth after optic nerve injury. Yet an unresolved challenge for regenerating RGC axons is to properly navigate the optic chiasm located at the Central Nervous System midline. Here, we use live-cell imaging in larval zebrafish to show that regrowing RGC axons initiate growth toward the midline and extend along a trajectory similar to their original projection. From a candidate genetic screen, we identify the glycosyltransferase Lh3 to be required during the process of regeneration to direct regrowing RGC axons toward the midline. Moreover, we find that mutants in collagen 18a1 (col18a1), a putative Lh3 substrate, display RGC axonal misguidance phenotypes similar to those we observe in lh3 mutants, suggesting that lh3 may act through col18a1 during regeneration. Finally, we show that transgenic lh3 expression in sox10+ presumptive olig2+ oligodendrocytes located near the optic chiasm restores directed axonal growth. Combined these data identify lh3 and col18a1 as part of a glial derived molecular pathway critical for guiding in vivo regenerating RGC axons towards and across the optic chiasm.