AbstractThulinius ruffoi is a freshwater species that has the ability to reproduce via parthenogenesis. A meroistic polytrophic ovary is present in this species. Analyses of the germarium structure, and formation and organization of female germ-cell clusters were performed using light, confocal laser scanning, transmission electron and serial block-face scanning electron microscopy. The germarium is the small, anterior part of an ovary that contains putative germ-line stem cells. In the studied species, the female germ-cell clusters are large and branched. Only one cell in each cluster develops into an oocyte, while all the other cells become trophocytes. In this paper, we present the first report on the presence of F-actin as a component of the intercellular bridges that connect the cells in the germ-cell cluster of T. ruffoi. Moreover, our results show that the female germ-cell clusters are formed as the result of both synchronous and asynchronous divisions and that their organization can vary not only between individuals of the investigated species, but also that clusters developing simultaneously within the same ovary can have a different spatial organization.