Linear IgE epitopes play essential roles in persistent allergies, including peanut and tree nut allergies. Using chemically synthesized peptides attached to membranes and microarray experiments is one approach for determining predominant epitopes that has seen success. However, the overall expense of this approach and the inherent challenges in scaling up the production and purification of synthetic peptides precludes the general application of this approach. To overcome this problem, we have constructed a plasmid vector for expressing peptides sandwiched between an N-terminal His-tag and a trimeric protein. The vector was used to make overlapping peptides derived from peanut allergens Ara h 2. All the peptides were successfully expressed and purified. The resulting peptides were applied to identify IgE binding epitopes of Ara h 2 using four sera samples from individuals with known peanut allergies. New and previously defined dominant IgE binding epitopes of Ara h 2 were identified. This system may be readily applied to produce agents for component- and epitope-resolved food allergy diagnosis.