In this paper, we study a 2 × 2 Bayesian entry game with correlated private information. The distribution of private information is modelled by a symmetric joint normal distribution. Therefore, the correlation coefficient of the private information distribution reflects the degree of dependence of players' private information. Under such specification, players' private information can be correlated flexibly, which is not confined to the typical additive specification of private payoff shocks or private information by Carlson and van Damme (1993), where the private information is correlated due to the common payoff shock. In our game, if the private information is correlated, we find that given the variances of the private information, there exists a restriction on the degree of correlation of players' private information that allows the game can be solved by cutoff strategies. Specifically, given the variances of the private information, if players' private information in strategic substitutes (strategic complements) Bayesian games are positively (negatively) correlated, the range of correlation coefficient that allows the game can be solved by cutoff strategies is restricted so that if the correlation is out of the range, the game cannot be solved by cutoff strategies. Alternatively, given positive (negative) correlation of private information, the value of variances that allows a strategic substitutes (strategic complements) Bayesian games can be solved by cutoff strategies are restricted within certain range. If the value of variances fall out of the range, the Bayesian game cannot be solved by cutoff strategies. However, given negative (positive) correlation of players' private information in strategic substitutes (strategic complements) Bayesian games, in which the Bayesian games can always be solved by cutoff strategies, we prove that as the variances converge to zero, all pure strategy Bayesian Nash equilibria of the perturbed games converge to the respective Nash equilibria of the corresponding strategic substitutes (strategic complements) complete information games. Based on the result, we conclude that the purification rationale proposed by Harsanyi (1973) can be extended to games with dependent perturbation errors that follow a symmetric joint normal distribution if the correlation coefficient is positive for the strategic complements games or negative for the strategic substitutes games.