Almost all molecules are non-centrosymmetric, which produces interaction anisotropy within a crystal lattice. This anisotropy generates multiple types of kink sites on each crystal step and repeating patterns of rows with different growth units from the perspective of the lattice interaction environment, even for pure molecular crystals. As a result, unstable edge rows may be generated that dissolve under conditions of crystal growth. A method to account for edge surface structures, considering such effects, is required to accurately model the step velocity, which is vital for a mechanistic description of crystal growth. We classify both thermodynamic and kinetic contributions to step row instability and develop expressions for kink densities and step velocities that capture these important non-centrosymmetric phenomena. To demonstrate the utility of our framework, we consider in depth the case of an alternating-row A–B step. Our mechanistic predictions compare favorably to kinetic Monte Carlo simulations...
Read full abstract