The present study investigated the role of resistance-nodulation-cell division (RND) efflux pumps in tigecycline resistance of Acinetobacter baumannii clinical isolates recovered from three Western Balkan countries (Serbia, Bosnia and Herzegovina and Montenegro). A total of 37 A. baumannii isolates recovered from seven tertiary care hospitals in 2016 and 2022 were tested against tigecycline using broth microdilution method. Then, efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used to determine the involvement of efflux pumps in tigecycline resistance. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE) and multiplex PCR-based determination of clonal lineage. Regulators of efflux pumps were analyzed for amino acid substitutions, while reverse transcription-quantitative PCR (RT-qPCR) enabled quantification of RND efflux pumps expression. All tested isolates were interpreted as resistant to tigecycline and showed reduced tigecycline minimum inhibitory concentration (MIC) values in the presence of CCCP. PFGE analysis showed significant diversity among isolates grouped in cluster I including IC2 (n = 32) and IC3 (n = 1) isolates, while cluster II was comprised of four IC1 isolates. The most prevalent substitutions in AdeR were V120I and A136V and in AdeS G186V and N268H (n = 33). The Q262R substitution was detected in AdeL proteins of IC1 isolates, whereas no alterations were observed within AdeN. The expression of the adeB, adeG, and adeJ genes in selected isolates was upregulated in five (1.16- to 3-fold), sixteen (1.35- to 2.82-fold), and twelve isolates (1.62- to 4-fold) compared to ATCC19606, respectively. This study revealed that overexpression of RND efflux pumps underlies tigecycline resistance in A. baumannii clinical isolates from the Western Balkans.
Read full abstract