A method of ultrashort laser pulse reconstruction is presented, consisting on the analysis of the nonlinear signal obtained from the interference of the pulse with a replica of itself at a given time delay while varying the relative amplitude between the pulses. The resulting spectral traces are analyzed both analytically and numerically, showing the encoding of the input pulse spectral phase. A reconstruction algorithm is discussed and applied to extract the spectral phase and, jointly to the measured spectral amplitude, reconstructing the pulse. In order to validate the technique, an experimental in-line implementation of the characterization concept is compared to the results from a stablished technique, obtaining a good agreement at different input pulse cases. In sum, a new technique is presented, showing the capability to reconstruct a broad range of temporal pulse durations while its implementation is robust and straightforward, able to be easily adapted to diverse pulse duration and central wavelength ranges.
Read full abstract