Purpose: The main objective of this study was to explore urban geology and infrastructure resilience.
 Methodology: The study adopted a desktop research methodology. Desk research refers to secondary data or that which can be collected without fieldwork. Desk research is basically involved in collecting data from existing resources hence it is often considered a low cost technique as compared to field research, as the main cost is involved in executive’s time, telephone charges and directories. Thus, the study relied on already published studies, reports and statistics. This secondary data was easily accessed through the online journals and library.
 Findings: The findings revealed that there exists a contextual and methodological gap relating to urban geology and infrastructure resilience. Preliminary empirical review revealed that urban geology and infrastructure resilience is essential in the face of rapid urbanization and increasing geological hazards. It emphasizes the vulnerability of urban infrastructure to geological risks, such as earthquakes and landslides, and highlights the need for improved building codes, construction practices, and infrastructure design. The research has broader implications for urban planning and policy-making, encouraging the integration of geological knowledge into decisions about land use and infrastructure investments. Furthermore, it contributes to innovative engineering techniques and technologies aimed at enhancing infrastructure resilience. Overall, understanding the relationship between urban geology and infrastructure resilience is crucial for creating safe, sustainable, and resilient urban environments.
 Unique Contribution to Theory, Practice and Policy: The Resilience Theory, Social-Ecological Systems (SES) Theory and Complexity Theory may be used to anchor future studies on urban geology. The study recommended that to enhance urban geology and infrastructure resilience, it is vital to integrate geological factors into urban planning, invest in resilient infrastructure, promote risk communication and community engagement, foster cross-disciplinary collaboration, and continually monitor and adapt to changing geological conditions. This comprehensive approach involves early geological assessments in urban development, funding for resilient infrastructure, public education, community involvement, interdisciplinary research, and ongoing monitoring to ensure cities can withstand geological hazards and build sustainable, safe urban environments.
Read full abstract