In recent years, the utilization of cloud technology has witnessed a surge, particularly in the domains of industrial automation and intelligent scenarios. However, the prevailing spring fatigue testing machine is still in the traditional single-machine working mode. In this mode, there are many problems such as low automation of testing equipment, poor experimental site environment, and the need for experimenters to be on duty for a long time. In order to solve the above problems, this paper builds a cloud-based remote monitoring and control system based on the high-temperature constant-force spring fatigue testing machine. The system is based on Browser/Server architecture, and clients can access it anytime and anywhere using a browser in a public network environment. The server is hosted on a public cloud platform and includes website service, data storage service, WebSocket real-time communication service, and remote video monitoring service. Clients can remotely monitor and control the testing machine in real time through the cloud. After experimental verification, the real-time monitoring and control messages delay is 11 ms, and the video monitoring delay is 291 ms, which can meet the actual needs of remote spring fatigue testing. This remote monitoring and control system improves the automation of the spring fatigue testing machine and improves the working environment of the experimenters. In addition, it can be applied to other reliability testing machines in the laboratory, and can further help build a workshop-level remote monitoring and control platform.
Read full abstract