PcrA is a chromosomally encoded DNA helicase of gram-positive bacteria involved in replication of rolling circle replicating plasmids. Efficient interaction between PcrA and the plasmid-encoded replication initiator (Rep) protein is considered a requirement for the plasmid to replicate in a given host, and thus, the ability of a Rep protein to interact with heterologous PcrA helicases has been invoked as a determinant of plasmid promiscuity. We characterized transcription of the Streptococcus pneumoniae pcrA gene in its genetic context and studied the biochemical properties of its product, the PcrA(Spn) helicase. Transcription of the pneumococcal pcrA gene was directed by promoter Pa, consisting of an extended -10 box. Promoter Pa also accounted for expression of a second essential gene, radC, which was transcribed with much lower efficiency than pcrA, probably due to the presence of a terminator/attenuator sequence located between the two genes. PcrA(Spn) displayed single-stranded DNA-dependent ATPase activity. PcrA(Spn) showed 5'-->3' and 3'-->5' helicase activities and bound efficiently to partially duplex DNA containing a hairpin structure adjacent to a 6-nucleotide 5' or 3' single-stranded tail and one unpaired (flap) nucleotide in the complementary strand. PcrA(Spn) interacted specifically with RepC, the initiator of staphylococcal plasmid pT181. Although the pneumococcal helicase was able to initiate unwinding of the RepC-nicked pT181 DNA, it was much less processive in this activity than the cognate staphylococcal PcrA protein. Accordingly, PcrA(Spn) was inefficient in in vitro replication of pT181, and perhaps as a consequence, this plasmid could not be established in S. pneumoniae.
Read full abstract