Psychrophilic proteases have attracted enormous attention in past decades, due to their high catalytic activity at low temperatures in a wide range of industrial processes, especially in the detergent and leather industries. Among them, H5 is an alkaline protease mutant, which featuring psychrophilic-like behavior, but the reasons that H5 with higher activity at low temperatures are still poorly understood. Herein, the molecular dynamics (MD) simulations combined with residue interaction network (RIN) were utilized to investigate the mechanisms of the cold-adaption of mutant H5. The results demonstrated that two loops involved in the substrate binding G100-S104 and S125-S129 in H5 had higher mobility, and the distance enlargement between the two loops modulated the substrate's accessibility compared with wild type counterpart. Besides, H5 enhanced conformational flexibility by weakening salt bridges and increasing interaction with the solvent. In particular, the absence of Lys251-Asp197-Arg247 salt bridge network may contribute to the structural mobility. Based on the free energy landscape and molecular mechanics Poisson-Boltzmann surface area of the wild type and H5, it was elucidated that H5 possessed a large population of interconvertible conformations, resulting in the weaker substrate binding free energy. The calculated RIN topology parameters such as the average degree, average cluster coefficient, and average path length further verified that the mutant H5 attenuated residue-to-residue interactions. The investigation of the mechanisms by which how the residue mutation affects the stability and activity of enzymes provides a theoretical basis for the development of cold-adapted protease.
Read full abstract