To investigate dynamical degree centrality (dDC) alteration and its association with metabolic disturbance and cognitive impairment in minimal hepatic encephalopathy (MHE). Fifty-eight cirrhotic patients (22 with MHE, 36 without MHE [NHE]) and 25 healthy controls underwent resting-state functional magnetic resonance imaging, 1H-magnetic resonance spectroscopy, and neurocognitive examination based on the Psychometric Hepatic Encephalopathy Score (PHES). We obtained metabolite ratios in the bilateral posterior cingulate cortex and precuneus, including glutamate and glutamine (Glx)/total creatine (tCr), myo-inositol (mI)/tCr, total choline/tCr, and N-acetyl aspartate/tCr. For each voxel, degree centrality was calculated as the sum of its functional connectivity with other voxels in the brain; and sliding-window correlation was used to calculate dDC per voxel. We observed a stepwise increase in Glx/tCr and a decrease in mI/tCr from NHE to MHE. The intergroup dDC differences were observed in the bilateral posterior cingulate cortex and precuneus (region of interest [ROI1]), bilateral superior-medial frontal gyrus and anterior cingulate cortex (ROI2), and left caudate head. The dDC in ROI2 (r = 0.450, P < 0.001) and mI/tCr (r = 0.297, P = 0.024) was correlated with PHES. Significant correlations were found between dDC in ROI1 and Glx/tCr (r = - 0.413, P = 0.001) and mI/tCr (r = 0.554, P < 0.001). The dDC in ROI2, Glx/tCr, and mI/tCr showed potential for distinguishing NHE from MHE (areas under the curve = 0.859, 0.655, and 0.672, respectively). Our findings suggested dynamic brain network disorganization in MHE, which was associated with metabolic derangement and neurocognitive impairment.