NAD-dependent 1,2-propanediol dehydrogenase (EC 1.1.1.4) activity was detected in cell-free crude extracts of various propane-grown bacteria. The enzyme activity was much lower in 1-propanol-grown cells than in propane-grown cells of Pseudomonas fluorescens NRRL B-1244, indicating that the enzyme may be inducible by metabolites of propane subterminal oxidation. 1,2-Propanediol dehydrogenase was purified from propane-grown Ps. fluorescens NRRL B-1244. The purified enzyme fraction shows a single-protein band upon acrylamide gel electrophoresis and has a molecular weight of 760,000. It consists of 10 subunits of identical molecular weight (77,600). It oxidizes diols that possess either two adjacent hydroxy groups, or a hydroxy group with an adjacent carbonyl group. Primary and secondary alcohols are not oxidized. The pH and temperature optima for 1,2-propanediol dehydrogenase are 8.5 and 20–25 °C, respectively. The activation energy calculated is 5.76 kcal/mol. 1,2-Propanediol dehydrogenase does not catalyze the reduction of acetol or acetoin in the presence of NADH (reverse reaction). The K m values at 25 °C, pH 7.0, buffer solution for 1,2-propanediol and NAD are 2 × 10 −2 and 9 × 10 −5 m, respectively. The 1,2-propanediol dehydrogenase activity was inhibited by strong thiol reagents, but not by metal-chelating agents. The amino acid composition of the purified enzyme was determined. Antisera prepared against purified 1,2-propanediol dehydrogenase from propane-grown Ps. fluorescens NRRL B-1244 formed homologous precipitin bands with isofunctional enzymes derived from propane-grown Arthrobacter sp. NRRL B-11315, Nocardia paraffinica ATCC 21198, and Mycobacterium sp. P2y, but not from propane-grown Pseudomonas multivorans ATCC 17616 and Brevibacterium sp. ATCC 14649, or 1-propanol-grown Ps. fluorescens NRRL B-1244. Isofunctional enzymes derived from methane-grown methylotrophs also showed different immunological and catalytic properties.
Read full abstract