Prussian blue analogues, particularly metal hexacyanoferrates with double octahedral coordination (DOC) structures, hold great promise as cathode materials for sodium-ion batteries. However, their practical application is hindered by limited structural stability and restricted ionic diffusion channels inherent to the DOC structure. In this study, we have successfully integrated a mixed tetrahedral and octahedral coordination (TOC) structure with the DOC structure by a dual polymerization and high-entropy strategy, thereby optimizing the central metal coordination environment in hexacyanoferrate cathodes. It leverages the TOC structure's superiorities in structural stability and ionic diffusion, resulting in a hexacyanoferrate-based cathode that exhibits exceptional performance, with a capacity retention of 81.6% after 1000 cycles at 0.5 A g-1 and high rate capabilities of 96.7 and 89.1 mAh g-1 at 0.5 and 1 A g-1, respectively. These findings not only underscore the potential of the TOC design for prussian blue cathodes but also pave the way for the development of high-performance, durable sodium-ion battery systems.
Read full abstract